Name (Print):

Math 250 Fall 2013 Quiz 2

1. (5 pts) A $m \times n$ matrix A is given. Determine whether the equation $A\mathbf{x} = \mathbf{b}$ is consistent for every **b** in \mathcal{R}^m .

$$\left[\begin{array}{rrrrr}1 & 2 & 3\\2 & 3 & 4\\3 & 4 & 6\end{array}\right]$$

Answer: The REF form of A is

$$\left[\begin{array}{rrrr} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1, \end{array}\right]$$

so the equation Ax = b is always consistent.

2. (5pts) Determine, if possible, a value of r for which the given set is linearly **dependent**.

∫[1		$\begin{bmatrix} -3 \\ 3 \end{bmatrix}$		4	$\left \right $
)[-1	,	3	,	r	5

Answer: Since

$\left[\begin{array}{c} -3\\3\end{array}\right]$	= -3	$\left[\begin{array}{c}1\\-1\end{array}\right]$,
--	------	---	---

the set is **always** linearly dependent. So **any** value of r would work. I note that a lot the answers gave r = -4. Since the question ask for a value of r, this answer is correct. But please note that if the question asks for all value of r then r = -4 is insufficient.